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Abstract

We evaluate the accuracy and efficiency of an expo-

nential integrator method applied to a cardiac excitation

model with numerically stiff Markov chain (MC) descrip-

tion of ionic channels, namely Ryanodine receptor (RyR)

and L-type calcium channel ICa(L). If solved by explicit

methods such as forward Euler (FE), the stability con-

straints for these MC models require very small time steps.

We extend the idea of the Rush-Larsen method, origi-

nally developed for Hodgkin-Huxley type gate models, for

MC models. The method is based on the assumption that

the variation of the transitions of MC is small within one

time step, so we can consider their values constant for the

duration of the time step.

Our method allows 30-fold increase of the time step size,

while providing reasonably accurate solutions and main-

taining numerical stability. The reduction of computa-

tional cost is achieved by increasing time step size of the

numerical integration.

1. Introduction

Electrophysiological description of cardiac cells in-

cludes models of ionic channels — large molecules in-

corporated into the cellular membrane. The simplest de-

scription of such channels is known as Hodgkin-Huxley

(HH) type models, following their seminal paper [1]. This

description hypothesises existence of imaginary “gates”,

which can close or open depending on the membrane volt-

age V , and lead to dynamic equations of the form

dy

dt
= α(V )(1− y)− β(V )y (1)

where y is the probability of a gate being open, and α and

β are voltage-depending opening an closing rates.

HH models are generalised as Markov chain (MC) mod-

els,

d~x

dt
= M(V , c)~x (2)

where the components of vector ~x are probabilities of a

channel to be in different conformation states, including

“open”, “closed” or “inactivated” states. Transition rates

between the states are defined by matrix M(V , c), and

may depend on the membrane voltage V or ionic concen-

trations c.

Such system is solved on a computer by computing the

states at discretized times tn = t0 + n∆t. The simplest

time stepper for differential equations is the forward Euler

(FE) method which defines the solution at the next time

step y(tn+1) = yn+1 in terms of the same at the current

time y(tn) = yn as

yn+1 = yn +∆t
dyn
dt

. (3)

The solution converges to the exact solution as the time

step size reduces. When less accurate solution is accept-

able the computing cost can be reduced by increasing the

time step size. The maximum time step is limited by

numerical instabilities, which are primarily due to fastest

transition rates. So the stability conditions are most strin-

gent in numerically stiff systems.

The instability issue can be addressed by using implicit

solvers. Generic implicit solvers are complicated, and it

often helps to exploit any specifics of a particular prob-

lem. Rush and Larsen [2] proposed a method specifically

for the gate models of ionic channels. The method pre-

sumes the transition rates to be almost constant constant

during one time step, and the corresponding equation with

“frozen” coefficients gives an exact solution in terms of

“steady-state” ȳ(V n) and “time constant” τ(V n):

yn+1 = ȳ(V n)− (ȳ(V n)− yn) exp

(

−
∆t

τ(V n)

)

. (4)

The MC often are a primary cause of instabilities in cel-

lular models, as some of the MC transition rates can be

much faster than other processes in the system. Hence ex-

plicit solvers require very small step size to avoid instabil-

ity in such models. An example is the cardiac cell model

published by Faber et al. [3] the use of which is somewhat

limited by the stiffness of the MC models used in it, to

which the Rush-Larsen method is not directly applicable.

In [4], we have described an extension of Rush-Larsen

scheme for Markov chains. Briefly, we set

~xn+1 = exp [M(V n, cn)∆t] ~xn (5)
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Figure 1. State diagrams of Markov chain models: (a)

RyR receptor ; (b) ICa(L) channel.

where the matrix exponential is calculated using diagonal-

ization and tabulated for the physiological ranges of the

variables V , c. We considered there an implementation of

this Matrix Rush-Larsen (MRL) scheme to a MC model of

the INa current. In this report we describe application of

the same method to the RyR and ICa(L) channels used in

[3], with an aim to prevent instabilities due to the stiffness

of MC and allow larger time steps. This application neces-

sitated some adjustments of the method, according to the

specifics of the MC. Here we focus on these adjustments,

referring the reader to [4] for other details.

2. Methods

2.1. Cellular Model

We obtained the C source code of Faber’s model from

the Rudy Laboratory website [5]. This model contains two

MC models: Ryanodine receptor and ICa(L) channel, see

Fig. 1. All gated ionic channels in this model are simulated

using Rush-Larsen method, which always yield stable so-

lution. The forward Euler scheme is used for the integra-

tion of ionic concentrations ([Ca2+]i, [Na
+]i, [K

+]i) and

membrane voltage V and, in the authors’ code, also for the

Markov chain models. The first action potential (AP) was

initiated at t = 1ms to allow use of logarithmic time axis

in the plots.

2.2. Ryanodine receptor

RyR is a calcium specific ion channel located in the

sarcoplasmic reticulum (SR). During the excitation, the

Ca2+ is released from SR to the intracellular sub-space,

a thin compartment located under the cellular membrane.
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Figure 2. (a) Transition rates of RyR channel during an

AP. (b) Numerical instability in by RyR model forward

Euler integration at various time steps.

The RyR model contains 10 states located in 2 rows in

the diagram Fig. 1(a), corresponding to inactivated (top

row) and activated states (bottom row). The state O1 is

conductive, all other states are non-conductive.

Transition rates (TR) of the RyR can be divided into four

groups (α, β, γ, δ), whose values are proportional. TR in

group of β’s are constant, α’s and γ’s depend on calcium

concentration in sub-space [Ca2+]ss, and δ’s are function

of calsequestrin buffered calcium concentration [CSQN].
Figure 2a shows the time evolution of the fastest represen-

tative of each group during one AP. The values of α’s reach

up to ∼ 102 ms−1, which puts an estimate for the maximal

allowable step for the FE solver at ∼ 10−2 ms.

Direct application of the Matrix Rush-Larsen method as

described in [4] is awkward here as the TRs depend on

two variables ([Ca2+]ss, [CSQN]) so tabulation would re-

quire large memory. However we note that all “vertical”

TRs (γ’s and δ’s) are uniformly small and the “horizon-

tal” TRs (α’s and β’s) only depend on [Ca2+]ss. Further-

more, the “horizontal” transition rates are identical in both

rows. So, for this MC we can write ~u = (~v, ~w), where

~v = [I1, I2, I3, I4, I5]
⊤, contains the states of the top row,
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and ~w = [C1, C2, C3, C4, O1]
⊤, containing the states of

the bottom row, and the TR matrix is

M([Ca2+]ss, [CSQN]) =

(

B 0
0 B

)

+C

where B = B([Ca2+]ss(t)) represents the “horizontal”

TRs and ‖C(. . . )‖ . 1ms−1 represents the “vertical”

TRs. Hence for this MC we use a mix of Matrix Rush-

Larsen and FE using Lie-style operator splitting:

~vn+1/2 = exp (∆tB(tn)) ~vn

~wn+1/2 = exp (∆tB(tn)) ~wn

~un+1 = ~un+1/2 +∆tC(tn)~un+1/2.

(6)

The matrix exponential exp(∆tB) is computed in ad-

vance, using eigenvalues and eigenvectors of B, for a grid

of the values of [Ca2+]ss. The [Ca2+]ss ranges in five

orders of magnitude, between 10−4 and 0.06mM, which

would make a table for an evenly spaced grid of [Ca2+]ss
values computationally and memory expensive. So we

use instead a grid with ln([Ca2+]ss) evenly spaced from

ln(10−5 mM) to ln(0.1mM) with the step 0.001.

The Lie substep taking care of the slow “vertical” transi-

tion rates is done with the FE scheme, which should work

for ∆t . ‖C‖−1 ∼ 1ms.

2.3. ICa(L) channel

The ICa(L) channel is controlled by two sorts of pro-

cesses, characterised by transition rates that are functions

of either voltage V or calcium concentration [Ca2+]i. The

independence of those processes allows us to consider

them separately. The [Ca2+]i-dependent regime factors

out as a HH-type gate, leaving the simplified MC model

for voltage dependent regime, which is shown on Fig. 1(b).

The only conductive state of the MC model is the state O,

however for the whole channel to be open, the [Ca2+]i-
dependent HH-type gate must also be open.

TRs of this factored out V -dependent part of the ICa(L)

MC model do not provide a clear further separation into

groups as was the case in RyR model, which makes oper-

ator splitting unusable. So we compute the MC using the

straightforward MRL as specified by (5).

For tabulation, we use values of V evenly spaced from

−100mV to 70mV with the step 0.01mV.

3. Results

To study the numerical properties of the cellular model,

we perform a number of simulations with different time

step sizes. The suggested time step in the authors’ code

was of ∆t = 1µs. Increasing this value above ∆t ≈
6.7µs causes instability as shown on Fig. 2(b). This in-

stability first occurs in the state O1 at the time, when the

fastest TR reaches its maximum. This instability does

not significantly affect the membrane potential up to the

∆t ≈ 9µs; beyond that, the solution crashes as the cal-

cium concentration reaches negative values. With the

mixed MRL/FE method (6), the RyR model provides sta-

ble solution for all ∆t we considered.

The instability in the FE scheme for the ICa(L) model

occurs also at the moment when the fastest TR reaches its

maximum (not shown). At ∆t ≈ 37µs the method is sta-

ble, while at ∆t = 38µs instability artefacts are observed

in the state C3. This hardly affects the overall solution as

the state C3 does not control the ICa(L) current directly.

However, at ∆t = 38.86 the oscillations around the true

solution propagate to ICa(L) and cause a drift in [Ca2+]ss.
Further increase of ∆t leads to fatal numerical errors.

When using the MRL method for ICa(L) model and the

mixed MRL/FE method for RyR, the time step can be in-

creased up to ∆t = 190µs without losing stability. Fig-

ure 3 shows a comparison of the solutions obtained with

the exponential integrators at various time steps. The ref-

erence solution is the FE with ∆t = 1µs. The results

are consistent with the expected numerical convergence at

∆t → 0. The deviation of V is up to about 20mV during

the AP upstroke, which is equivalent to a less than 0.1ms
shift of the timing of the upstroke, and in the later phases

reduces to less than 1mV even for the highest time step.

Table 1 compares the computational costs of different

methods. The timings are for pure calculations, without

input/output or precomputing of the matrix exponentials.

The blank spaces in the table represent unstable combi-

nation of computational method and time step. It is clear

that both mixed MRL/FE and MRL schemes are compu-

tationaly more expensive than FE at the same time step.

However, the advantage of exponential integrators is in the

possiblity of increasing the time step above the stability

threshold of the explicit solvers.

Table 1. Time in seconds used for a simulation of 100

beats with the cycle length of 1000ms on an Intel Core

i5-3470 3.2 GHz GNU/Linux box, separately for RyR and

ICa(L) Markov chains and for the whole cell model, com-

paring MRL/FE scheme (RyR) and MRL (ICa(L)) schemes

with the original FE scheme.

∆t [µs] 1 6 35 180

RyR
FE 22.44 3.90
MRL/FE 41.68 6.93 1.198 0.2344

ICa(L)
FE 68.17 11.33 1.977
MRL 82.94 13.82 2.369 0.4619

total

FE 323.0 54.08
MRL/FE 346.8 57.84 9.937
MRL 342.8 57.21
MRL+MRL/FE 358.9 59.68 10.27 1.996
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Figure 3. Comparison of the exponential integrators for RyR and ICa(L). Panel (a) shows the reference membrane potential:

black line (left y-axis), and difference between the reference and a solution by exponential integrators (right y-axis); panel

(b) shows the ICa(L) current; panel (c) shows RyR current.

4. Conclusions

The MRL method for ICa(L) combined with mixed

MRL/FE method for RyR allow larger time steps, up to

∼ 180µs, compared to ∼ 6µs affordable for the original

method, and the computation time reduces by a factor of

27. The instability at larger time steps occurs via intracel-

lular concentrations [Na+]i and [K+]i, which in any case

are calculated by the FE scheme. As these concentrations

are described by nonlinear equations coupled with other

dynamical variables, we can not directly apply the MRL

methods; see, however, [6].

The FE scheme with ∆t = 6µs is stable for both

Markov chain models. Further increasing of the step size

requires MRL/FE scheme for the RyR Markov chain. For

time steps above 37 µs, stability requires use of the MRL

scheme for the ICa(L) Markov chain.

In implementing the idea of the Matrix Rush-Larsen

method, we had to take into account specifics of the two

Markov chains in question. In both cases, the problems

were related to the dependence of the transition rates on

different dynamic variables; and in both cases the prob-

lems were overcome by careful analysis of the structure of

the transition rate matrices.

The main benefit of applying suggested methods, is the

possibility to increase the time step size. This leads to

the reduction of the computational cost, without the dan-

ger that the solver becomes unstable. An obvious dis-

advantage of higher time steps is loss of accuracy; how-

ever when stability of the MC components of the model is

ensured, it opens the way to using higher-order schemes

to improve the accuracy, say higher-order modifications

of Rush-Larsen scheme (see e.g. [6]), for HH-type gates;

their suitable matrix generalizations for Markov chains;

and Runge-Kutta type methods for other components. This

presents an interesting direction for further study.
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